Computing Hilbert Transform and Spectral Factorization for Signal Spaces of Smooth Functions

Holger Boche, Volker Pohl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Although the Hilbert transform and the spectral factorization are of central importance in signal processing, both operations can generally not be calculated in closed form. Therefore, algorithmic solutions are prevalent which provide an approximation of the true solution. Then it is important to effectively control the approximation error of these approximate solutions. This paper characterizes for both operations precisely those signal spaces of differentiable functions for which such an effective control of the approximation error is possible. In other words, the paper provides a precise characterization of signal spaces of smooth functions on which these two operations are computable on Turing machines.

OriginalspracheEnglisch
Titel2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5300-5304
Seitenumfang5
ISBN (elektronisch)9781509066315
DOIs
PublikationsstatusVeröffentlicht - Mai 2020
Veranstaltung2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spanien
Dauer: 4 Mai 20208 Mai 2020

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band2020-May
ISSN (Print)1520-6149

Konferenz

Konferenz2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
Land/GebietSpanien
OrtBarcelona
Zeitraum4/05/208/05/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computing Hilbert Transform and Spectral Factorization for Signal Spaces of Smooth Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren