Computing CNN loss and gradients for pose estimation with Riemannian geometry

Benjamin Hou, Nina Miolane, Bishesh Khanal, Matthew C.H. Lee, Amir Alansary, Steven McDonagh, Jo V. Hajnal, Daniel Rueckert, Ben Glocker, Bernhard Kainz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

21 Zitate (Scopus)

Abstract

Pose estimation, i.e. predicting a 3D rigid transformation with respect to a fixed co-ordinate frame in, SE(3), is an omnipresent problem in medical image analysis. Deep learning methods often parameterise poses with a representation that separates rotation and translation. As commonly available frameworks do not provide means to calculate loss on a manifold, regression is usually performed using the L2-norm independently on the rotation’s and the translation’s parameterisations. This is a metric for linear spaces that does not take into account the Lie group structure of SE(3). In this paper, we propose a general Riemannian formulation of the pose estimation problem, and train CNNs directly on SE(3) equipped with a left-invariant Riemannian metric. The loss between the ground truth and predicted pose (elements of the manifold) is calculated as the Riemannian geodesic distance, which couples together the translation and rotation components. Network weights are updated by back-propagating the gradient with respect to the predicted pose on the tangent space of the manifold SE(3). We thoroughly evaluate the effectiveness of our loss function by comparing its performance with popular and most commonly used existing methods, on tasks such as image-based localisation and intensity-based 2D/3D registration. We also show that hyper-parameters, used in our loss function to weight the contribution between rotations and translations, can be intrinsically calculated from the dataset to achieve greater performance margins.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
Redakteure/-innenJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
Herausgeber (Verlag)Springer Verlag
Seiten756-764
Seitenumfang9
ISBN (Print)9783030009274
DOIs
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spanien
Dauer: 16 Sept. 201820 Sept. 2018

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11070 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Land/GebietSpanien
OrtGranada
Zeitraum16/09/1820/09/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computing CNN loss and gradients for pose estimation with Riemannian geometry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren