Computationally Efficient Rigid-Body Gaussian Process for Motion Dynamics

Muriel Lang, Sandra Hirche

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

In this letter, we address the modeling and learning of complex nonlinear rigid-body motions employing Gaussian processes. As the common procedure of using Euler angles in the Gaussian process results in inaccurate predictions for large rotations, we represent the input data by axis-angle pseudovectors for rotations and Euclidean vectors for translation. Our decision in favor of this representation of the special Euclidean group SE(3) is due to its computational efficiency. To allow Gaussian process estimation on a non-Euclidean input domain, such as the space of rigid motions, we generalize the model by introducing novel mean and covariance functions on SE(3). We prove that those functions fulfill the requirements of Gaussian processes. The proposed approach is validated on simulated and on real human motion data. Our results demonstrate significant benefits of the proposed rigid-body Gaussian process with respect to alternative variants in terms of regression performance and computational efficiency.

OriginalspracheEnglisch
Aufsatznummer7869309
Seiten (von - bis)1601-1608
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang2
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Juli 2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computationally Efficient Rigid-Body Gaussian Process for Motion Dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren