Computational TMA analysis and cell nucleus classification of renal cell carcinoma

Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth, Joachim M. Buhmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining.

OriginalspracheEnglisch
TitelPattern Recognition - 32nd DAGM Symposium, Proceedings
Seiten202-211
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung32nd Annual Symposium of the German Association for Pattern Recognition, DAGM 2010 - Darmstadt, Deutschland
Dauer: 22 Sept. 201024 Sept. 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band6376 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz32nd Annual Symposium of the German Association for Pattern Recognition, DAGM 2010
Land/GebietDeutschland
OrtDarmstadt
Zeitraum22/09/1024/09/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computational TMA analysis and cell nucleus classification of renal cell carcinoma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren