Computational learning theory applied to discrete-time cellular neural networks

Publikation: KonferenzbeitragPapierBegutachtung

2 Zitate (Scopus)

Abstract

In this paper the theory of probably approximately correct (PAC) learning is applied to Discrete-Time Cellular Neural Networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is to be determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture will be given.

OriginalspracheEnglisch
Seiten159-164
Seitenumfang6
PublikationsstatusVeröffentlicht - 1994
VeranstaltungProceedings of the 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94) - Rome, Italy
Dauer: 18 Dez. 199421 Dez. 1994

Konferenz

KonferenzProceedings of the 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)
OrtRome, Italy
Zeitraum18/12/9421/12/94

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computational learning theory applied to discrete-time cellular neural networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren