Compressive sensing with redundant dictionaries and structured measurements

Felix Krahmer, Deanna Needell, Rachel Ward

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Sparse approximation methods for the recovery of signals from undersampled data when the signal is sparse in an overcomplete dictionary have received much attention recently due to their practical importance. A common assumption is the D-restricted isometry property (D-RIP), which asks that the sampling matrix approximately preserve the norm of all signals sparse in D. While many classes of random matrices satisfy this condition, those with a fast-multiply stemming from subsampled bases require an additional randomization of the column signs, which is not feasible in many practical applications. In this work, we demonstrate that one can subsample certain bases in such a way that the D-RIP will hold without the need for random column signs.

OriginalspracheEnglisch
Titel2015 International Conference on Sampling Theory and Applications, SampTA 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten25-29
Seitenumfang5
ISBN (elektronisch)9781467373531
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2015
Veranstaltung11th International Conference on Sampling Theory and Applications, SampTA 2015 - Washington, USA/Vereinigte Staaten
Dauer: 25 Mai 201529 Mai 2015

Publikationsreihe

Name2015 International Conference on Sampling Theory and Applications, SampTA 2015

Konferenz

Konferenz11th International Conference on Sampling Theory and Applications, SampTA 2015
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum25/05/1529/05/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Compressive sensing with redundant dictionaries and structured measurements“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren