Compressive sensing for neutrospheric water vapor tomography using GNSS and InSAR observations

Marion Heublein, Xiao Xiang Zhu, Fadwa Alshawaf, Michael Mayer, Richard Bamler, Stefan Hinz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

21 Zitate (Scopus)

Abstract

This paper presents the innovative Compressive Sensing (CS) concept for tomographic reconstruction of 3D neutrospheric water vapor fields using data from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). The Precipitable Water Vapor (PWV) input data are derived from simulations of the Weather Research and Forecasting modeling system. We apply a Compressive Sensing based approach for tomographic inversion. Using the Cosine transform, a sparse representation of the water vapor field is obtained. The new aspects of this work include both the combination of GNSS and InSAR data for water vapor tomography and the sophisticated CS estimation: The combination of GNSS and InSAR data shows a significant improvement in 3D water vapor reconstruction; and the CS estimation produces better results than a traditional Tikhonov regulari-zation with l2 norm penalty term.

OriginalspracheEnglisch
Titel2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5268-5271
Seitenumfang4
ISBN (elektronisch)9781479979295
DOIs
PublikationsstatusVeröffentlicht - 10 Nov. 2015
VeranstaltungIEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Milan, Italien
Dauer: 26 Juli 201531 Juli 2015

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2015-November

Konferenz

KonferenzIEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015
Land/GebietItalien
OrtMilan
Zeitraum26/07/1531/07/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Compressive sensing for neutrospheric water vapor tomography using GNSS and InSAR observations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren