Comparison of different meta model approches with a detailed buiding model for long-Term simulations

Johannes Maderspacher, Philipp Geyer, Thomas Auer, Werner Lang

Publikation: KonferenzbeitragPapierBegutachtung

5 Zitate (Scopus)

Abstract

If detailed building models are applied for long- Term simulations, for instance the prediction of the future energy demand under climate change, the computational effort can turn into a serious issue. Machine learning algorithms like Neural Networks (NN) or Support Vector Machine (SVM) could be an alternative. In this work a possible application of NN and SVM for long- Term forecasts are proven and their limitations are presented. In the examined case study, with a simulation period over 30 years, the SVM is hundred fifty times and the NN ten times faster than a detailed building model. This reduction of computational effort can be useful for further studies as a uncertainty analysis of climate change.

OriginalspracheEnglisch
Seiten106-113
Seitenumfang8
PublikationsstatusVeröffentlicht - 2015
Veranstaltung14th Conference of International Building Performance Simulation Association, BS 2015 - Hyderabad, Indien
Dauer: 7 Dez. 20159 Dez. 2015

Konferenz

Konferenz14th Conference of International Building Performance Simulation Association, BS 2015
Land/GebietIndien
OrtHyderabad
Zeitraum7/12/159/12/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Comparison of different meta model approches with a detailed buiding model for long-Term simulations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren