Compactness-preserving mapping on trees

Jan Baumbach, Jiong Guo, Rashid Ibragimov

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We introduce a generalization of the graph isomorphism problem. Given two graphs G 1=(V 1, E 1) and G 2=(V 2, E 2) and two integers l and d, we seek for a one-to-one mapping f:V 1→V 2, such that for every v ∈ V 1, it holds that Lv -Lv d, where,Lv ∑ u∈N1G1 dist G1 (V,U), L v:= ∑ u∈N1G1 (V) dist G2 (f(v), f(u)), and Ni G (v) denotes the set of vertices which have distance at most i to v in a graph G. We call this problem Compactness-Preserving Mapping (CPM). In the paper we study CPM with input graphs being trees and present a dichotomy of classical complexity with respect to different values of l and d. CPM on trees can be solved in polynomial time only if l ≤2 and d≤1.

OriginalspracheEnglisch
TitelCombinatorial Pattern Matching - 25th Annual Symposium, CPM 2014, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten162-171
Seitenumfang10
ISBN (Print)9783319075655
DOIs
PublikationsstatusVeröffentlicht - 2014
Extern publiziertJa
Veranstaltung25th Annual Symposium on Combinatorial Pattern Matching, CPM 2014 - Moscow, Russland
Dauer: 16 Juni 201418 Juni 2014

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band8486 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz25th Annual Symposium on Combinatorial Pattern Matching, CPM 2014
Land/GebietRussland
OrtMoscow
Zeitraum16/06/1418/06/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Compactness-preserving mapping on trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren