Communication Topologies for Decentralized Federated Learning

Michael Dötzer, Yixin Mao, Klaus Diepold

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Conventional federated learning aims at enabling clients to contribute to a global training process while keeping their own data local. However, as the number of devices on the network increases, it can no longer be assumed that there is a central entity with sufficient bandwidth or computing resources to handle the volume of requests. Hence, in this paper, we consider implementing federated learning with different topologies in a network without a central entity. We compare hierarchical and decentralized topologies with varying degrees of interconnectivity. In our experiments, we use 50 clients with small CNNs and MNIST, FashinMNIST or Cifar10 datasets. Our results show that models in a decentralized network can achieve similar performances as models in a centralized network if the topology is carefully chosen. We relate the accuracy of the models to the estimated communication overhead by considering the number of communication connections required for a given topology. These results indicate that cluster topologies can leverage similarities of data distributions and mitigate the communication effort without sacrificing performance. In addition, we present a simple method to estimate the information transfer performance of a topology without empirical testing.

OriginalspracheEnglisch
Titel2023 8th International Conference on Fog and Mobile Edge Computing, FMEC 2023
Redakteure/-innenMuhannad Quwaider, Feras M. Awaysheh, Yaser Jararweh
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten232-238
Seitenumfang7
ISBN (elektronisch)9798350316971
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung8th IEEE International Conference on Fog and Mobile Edge Computing, FMEC 2023 - Tartu, Estland
Dauer: 18 Sept. 202320 Sept. 2023

Publikationsreihe

Name2023 8th International Conference on Fog and Mobile Edge Computing, FMEC 2023

Konferenz

Konferenz8th IEEE International Conference on Fog and Mobile Edge Computing, FMEC 2023
Land/GebietEstland
OrtTartu
Zeitraum18/09/2320/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Communication Topologies for Decentralized Federated Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren