Combining knowledge modeling and machine learning for alarm root cause analysis

Lisa Abele, Maja Anic, Tim Gutmann, Jens Folmer, Martin Kleinsteuber, Birgit Vogel-Heuser

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

48 Zitate (Scopus)

Abstract

Industrial alarm systems inform the operator of abnormal plant behavior and are required to guarantee safety, quality, and productivity of the plant. However, modern alarm systems often produce large amounts of false or nuisance alarms which leads to alarm floods. Operators receive far more alarms than they can handle. To reduce these alarm floods, we developped an alarm system that performs Root Cause Analysis (RCA) upon an alarm model constructed with Bayesian networks. In this paper, we present methods to construct Bayesian networks for RCA with a knowledge-based and a machine learning approach. Finally, we evaluated both approaches with an example of an industrial plant and propose an architecture to combine both approaches.

OriginalspracheEnglisch
Titel7th IFAC Conference on Manufacturing Modelling, Management, and Control, MIM 2013 - Proceedings
Herausgeber (Verlag)IFAC Secretariat
Seiten1843-1848
Seitenumfang6
Auflage9
ISBN (Print)9783902823359
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung7th IFAC Conference on Manufacturing Modelling, Management, and Control, MIM 2013 - Saint Petersburg, Russland
Dauer: 19 Juni 201321 Juni 2013

Publikationsreihe

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Nummer9
Band46
ISSN (Print)1474-6670

Konferenz

Konferenz7th IFAC Conference on Manufacturing Modelling, Management, and Control, MIM 2013
Land/GebietRussland
OrtSaint Petersburg
Zeitraum19/06/1321/06/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Combining knowledge modeling and machine learning for alarm root cause analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren