Combining data sources nonlinearly for cell nucleus classification of renal cell carcinoma

Mehmet Gönen, Aydin Ulaş, Peter Schüffler, Umberto Castellani, Vittorio Murino

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed kernel function. This approach is called multiple kernel learning (MKL). In this paper, we formulate a nonlinear MKL variant and apply it for nuclei classification in tissue microarray images of renal cell carcinoma (RCC). The proposed variant is tested on several feature representations extracted from the automatically segmented nuclei. We compare our results with single-kernel support vector machines trained on each feature representation separately and three linear MKL algorithms from the literature. We demonstrate that our variant obtains more accurate classifiers than competing algorithms for RCC detection by combining information from different feature representations nonlinearly.

OriginalspracheEnglisch
TitelSimilarity-Based Pattern Recognition - First International Workshop, SIMBAD 2011, Proceedings
Seiten250-260
Seitenumfang11
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
Veranstaltung1st International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2011 - Venice, Italien
Dauer: 28 Sept. 201130 Sept. 2011

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7005 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2011
Land/GebietItalien
OrtVenice
Zeitraum28/09/1130/09/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Combining data sources nonlinearly for cell nucleus classification of renal cell carcinoma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren