Combinatorial preconditioners for proximal algorithms on graphs

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

Publikation: KonferenzbeitragPapierBegutachtung

1 Zitat (Scopus)

Abstract

We present a novel preconditioning technique for proximal optimization methods that relies on graph algorithms to construct effective preconditioners. Such combinatorial preconditioners arise from partitioning the graph into forests. We prove that certain decompositions lead to a theoretically optimal condition number. We also show how ideal decompositions can be realized using matroid partitioning and propose efficient greedy variants thereof for large-scale problems. Coupled with specialized solvers for the resulting scaled proximal subproblems, the preconditioned algorithm achieves competitive performance in machine learning and vision applications.

OriginalspracheEnglisch
Seiten38-47
Seitenumfang10
PublikationsstatusVeröffentlicht - 2018
Veranstaltung21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spanien
Dauer: 9 Apr. 201811 Apr. 2018

Konferenz

Konferenz21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Land/GebietSpanien
OrtPlaya Blanca, Lanzarote, Canary Islands
Zeitraum9/04/1811/04/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Combinatorial preconditioners for proximal algorithms on graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren