Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU

Knut B. Kaldestad, Sami Haddadin, Rico Belder, Geir Hovland, David A. Anisi

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

33 Zitate (Scopus)

Abstract

In this paper we present an experimental study on real-time collision avoidance with potential fields that are based on 3D point cloud data and processed on the Graphics Processing Unit (GPU). The virtual forces from the potential fields serve two purposes. First, they are used for changing the reference trajectory. Second they are projected to and applied on torque control level for generating according nullspace behavior together with a Cartesian impedance main control loop. The GPU algorithm creates a map representation that is quickly accessible. In addition, outliers and the robot structure are efficiently removed from the data, and the resolution of the representation can be easily adjusted. Based on the 3D robot representation and the remaining 3D environment data, the virtual forces that are fed to the trajectory planning and torque controller are calculated. The algorithm is experimentally verified with a 7-Degree of Freedom (DoF) torque controlled KUKA/DLR Lightweight Robot for static and dynamic environmental conditions. To the authors knowledge, this is the first time that collision avoidance is demonstrated in real-time on a real robot using parallel GPU processing.

OriginalspracheEnglisch
TitelProceedings - IEEE International Conference on Robotics and Automation
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3250-3257
Seitenumfang8
ISBN (elektronisch)9781479936854, 9781479936854
DOIs
PublikationsstatusVeröffentlicht - 22 Sept. 2014
Extern publiziertJa
Veranstaltung2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Dauer: 31 Mai 20147 Juni 2014

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Land/GebietChina
OrtHong Kong
Zeitraum31/05/147/06/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren