Collective classification for labeling of places and objects in 2D and 3D range data

Rudolph Triebel, Óscar Martínez Mozos, Wolfram Burgard

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

In this paper, we present an algorithm to identify types of places and objects from 2D and 3D laser range data obtained in indoor environments. Our approach is a combination of a collective classification method based on associative Markov networks together with an instance-based feature extraction using nearest neighbor. Additionally, we show how to select the best features needed to represent the objects and places, reducing the time needed for the learning and inference steps while maintaining high classification rates. Experimental results in real data demonstrate the effectiveness of our approach in indoor environments.

OriginalspracheEnglisch
TitelData Analysis, Machine Learning and Applications - Proceedings of the 31st Annual Conference of the Gesellschaft fur Klassifikation e.V., GfKI 2007
Herausgeber (Verlag)Kluwer Academic Publishers
Seiten293-300
Seitenumfang8
ISBN (Print)9783540782391
DOIs
PublikationsstatusVeröffentlicht - 2008
Extern publiziertJa
Veranstaltung31st Annual Conference of the German Classification Society (Gesellschaft fur Klassifikation) on Data Analysis, Machine Learning, and Applications, GfKl 2007 - Freiburg, Deutschland
Dauer: 7 März 20079 März 2007

Publikationsreihe

NameStudies in Classification, Data Analysis, and Knowledge Organization
ISSN (Print)1431-8814

Konferenz

Konferenz31st Annual Conference of the German Classification Society (Gesellschaft fur Klassifikation) on Data Analysis, Machine Learning, and Applications, GfKl 2007
Land/GebietDeutschland
OrtFreiburg
Zeitraum7/03/079/03/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „Collective classification for labeling of places and objects in 2D and 3D range data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren