Collaborative programming of conditional robot tasks

Christoph Willibald, Thomas Eiband, Dongheui Lee

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Conventional robot programming methods are not suited for non-experts to intuitively teach robots new tasks. For this reason, the potential of collaborative robots for production cannot yet be fully exploited. In this work, we propose an active learning framework, in which the robot and the user collaborate to incrementally program a complex task. Starting with a basic model, the robot's task knowledge can be extended over time if new situations require additional skills. An on-line anomaly detection algorithm therefore automatically identifies new situations during task execution by monitoring the deviation between measured- and commanded sensor values. The robot then triggers a teaching phase, in which the user decides to either refine an existing skill or demonstrate a new skill. The different skills of a task are encoded in separate probabilistic models and structured in a high-level graph, guaranteeing robust execution and successful transition between skills. In the experiments, our approach is compared to two state-of-the-art Programming by Demonstration frameworks on a real system. Increased intuitiveness and task performance of the method can be shown, allowing shop-floor workers to program industrial tasks with our framework.

OriginalspracheEnglisch
Titel2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5402-5409
Seitenumfang8
ISBN (elektronisch)9781728162126
DOIs
PublikationsstatusVeröffentlicht - 24 Okt. 2020
Extern publiziertJa
Veranstaltung2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, USA/Vereinigte Staaten
Dauer: 24 Okt. 202024 Jan. 2021

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Land/GebietUSA/Vereinigte Staaten
OrtLas Vegas
Zeitraum24/10/2024/01/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Collaborative programming of conditional robot tasks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren