COCCA: Point Cloud Completion through Cad Cross-Attention

Adam Misik, Driton Salihu, Heike Brock, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

3D scene- and object-level scans typically result in sparse and incomplete point clouds. Since dense point clouds of high quality are essential for the 3D reconstruction process, a promising approach is to improve the scan quality by point cloud completion. In this paper, we present COCCA, an extension of point cloud completion networks for scan-to-CAD use cases. The proposed extension is based on cross-attention of features extracted from a scan with rotation-, translation-, and scale-invariant features extracted from a sampled CAD point cloud. With the proposed cross-attention operation, we improve the learning of scan features and the subsequent decoding to a complete shape. We demonstrate the effectiveness of COCCA on the ShapeNet dataset in quantitative and qualitative experiments. COCCA improves the overall completion performance of point cloud completion networks by up to 11.8% for Chamfer Distance and up to 2.2% for F-Score. Our qualitative experiments visualize how COCCA completes point clouds with higher geometric detail. In addition, we demonstrate how completion by COCCA improves the point cloud registration task required for scan-to-CAD alignment.

OriginalspracheEnglisch
Titel2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten580-584
Seitenumfang5
ISBN (elektronisch)9781728198354
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, Malaysia
Dauer: 8 Okt. 202311 Okt. 2023

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz30th IEEE International Conference on Image Processing, ICIP 2023
Land/GebietMalaysia
OrtKuala Lumpur
Zeitraum8/10/2311/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „COCCA: Point Cloud Completion through Cad Cross-Attention“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren