TY - JOUR
T1 - Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions
AU - Weis, Corina
AU - Pfeilmeier, Sebastian
AU - Glawischnig, Erich
AU - Isono, Erika
AU - Pachl, Fiona
AU - Hahne, Hannes
AU - Kuster, Bernhard
AU - Eichmann, Ruth
AU - Hückelhoven, Ralph
PY - 2013/10
Y1 - 2013/10
N2 - The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thalianaBI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H+-ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
AB - The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thalianaBI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H+-ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
UR - http://www.scopus.com/inward/record.url?scp=84883447011&partnerID=8YFLogxK
U2 - 10.1111/mpp.12050
DO - 10.1111/mpp.12050
M3 - Article
C2 - 23782494
AN - SCOPUS:84883447011
SN - 1464-6722
VL - 14
SP - 791
EP - 802
JO - Molecular Plant Pathology
JF - Molecular Plant Pathology
IS - 8
ER -