CNN-BASED LOCAL TONE MAPPING IN THE PERCEPTUAL QUANTIZATION DOMAIN

Hongjie You, Hu Chen, Yichuan Wang, Kai Cui, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

A typical way of local tone mapping (TM) is based on multilayer decomposition of the source image. For this, the source image is decomposed into a base layer and a detail layer to compress from high dynamic range (HDR) to low dynamic range (LDR). Perceptual quantization (PQ) is a standardized non-linear transfer function for HDR content. It mimics the non-linearity of human vision by compressing more strongly in bright regions and less in dark areas, when converting luminance values to electrical signals. We propose a CNN-based pipeline for local TM, which operates on the low-frequency base layer of the luminance signal, while keeping the detail layer unchanged. The proposed method works entirely in the PQ domain and is adaptable to display peak luminance. The tone-mapped LDR images obtained with our learning-based approach show significant improvements in PSNR, while the network size is reduced compared to previous work. Our experiments on the HDR datasets from Fairchild and Funt show PSNR improvements of 8 dB compared to the state-of-the-art approaches.

OriginalspracheEnglisch
Titel2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten1566-1570
Seitenumfang5
ISBN (elektronisch)9781665496209
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung29th IEEE International Conference on Image Processing, ICIP 2022 - Bordeaux, Frankreich
Dauer: 16 Okt. 202219 Okt. 2022

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz29th IEEE International Conference on Image Processing, ICIP 2022
Land/GebietFrankreich
OrtBordeaux
Zeitraum16/10/2219/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „CNN-BASED LOCAL TONE MAPPING IN THE PERCEPTUAL QUANTIZATION DOMAIN“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren