Clustering Mobile Network Data with Decorrelating Adversarial Nets

Marton Kajo, Janik Schnellbach, Stephen S. Mwanje, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Deep learning plays a crucial role in enabling cognitive automation for the mobile networks of the future. Deep clustering - a subset of deep learning - is a valuable tool for many network automation use cases. Unfortunately, most state-of-the-art clustering algorithms target image datasets, which makes them hard to apply to mobile network automation due to their highly tuned nature and assumptions about the data. In this paper, we propose a new algorithm, Decorrelating Adversarial Nets for Clustering-friendly Encoding (DANCE), intended to be a reliable deep clustering method for mobile network automation use cases. DANCE uses a reconstructive clustering approach, separating clustering-relevant from clustering-irrelevant features in a latent representation. This separation removes unnecessary information from the clustering, increasing consistency and peak performance. We comprehensively evaluate DANCE and other select state-of-the-art deep clustering algorithms, and show that DANCE outperforms these algorithms by a significant margin in a mobile user behavior clustering task based on data gained from a simulated scenario.

OriginalspracheEnglisch
TitelProceedings of the IEEE/IFIP Network Operations and Management Symposium 2022
UntertitelNetwork and Service Management in the Era of Cloudification, Softwarization and Artificial Intelligence, NOMS 2022
Redakteure/-innenPal Varga, Lisandro Zambenedetti Granville, Alex Galis, Istvan Godor, Noura Limam, Prosper Chemouil, Jerome Francois, Marc-Oliver Pahl
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665406017
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/IFIP Network Operations and Management Symposium, NOMS 2022 - Budapest, Ungarn
Dauer: 25 Apr. 202229 Apr. 2022

Publikationsreihe

NameProceedings of the IEEE/IFIP Network Operations and Management Symposium 2022: Network and Service Management in the Era of Cloudification, Softwarization and Artificial Intelligence, NOMS 2022

Konferenz

Konferenz2022 IEEE/IFIP Network Operations and Management Symposium, NOMS 2022
Land/GebietUngarn
OrtBudapest
Zeitraum25/04/2229/04/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Clustering Mobile Network Data with Decorrelating Adversarial Nets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren