Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement Learning

Hongpeng Cao, Mirco Theile, Federico G. Wyrwal, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks by learning policies through interactions with the environment. However, the training of DRL policies requires large amounts of training experiences, making it impractical to learn the policy directly on physical systems. Sim-to-real approaches leverage simulations to pretrain DRL policies and then deploy them in the real world. Unfortunately, the direct real-world deployment of pretrained policies usually suffers from performance deterioration due to the different dynamics, known as the reality gap. Recent sim-to-real methods, such as domain randomization and domain adaptation, focus on improving the robustness of the pretrained agents. Nevertheless, the simulation-trained policies often need to be tuned with real-world data to reach optimal performance, which is challenging due to the high cost of real-world samples. This work proposes a distributed cloud-edge architecture to train DRL agents in the real world in real-time. In the architecture, the inference and training are assigned to the edge and cloud, separating the real-time control loop from the computationally expensive training loop. To overcome the reality gap, our architecture exploits sim-to-real transfer strategies to continue the training of simulation-pretrained agents on a physical system. We demonstrate its applicability on a physical inverted-pendulum control system, analyzing critical parameters. The real-world experiments show that our architecture can adapt the pretrained DRL agents to unseen dynamics consistently and efficiently.11A video showing a real-world training process under the proposed method can be found from https://youtu.be/hMY9-c0SST0.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten9363-9370
Seitenumfang8
ISBN (elektronisch)9781665479271
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
Band2022-October
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Land/GebietJapan
OrtKyoto
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren