Cloud-based evaluation framework for big data

Allan Hanbury, Henning Müller, Georg Langs, Bjoern H. Menze

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

The VISCERAL project is building a cloud-based evaluation framework for evaluating machine learning and information retrieval algorithms on large amounts of data. Instead of downloading data and running evaluations locally, the data will be centrally available on the cloud and algorithms to be evaluated will be programmed in computing instances on the cloud, effectively bringing the algorithms to the data. This approach allows evaluations to be performed on Terabytes of data without needing to consider the logistics of moving the data or storing the data on local infrastructure. After discussing the challenges of benchmarking on big data, the design of the VISCERAL system is presented, concentrating on the components for coordinating the participants in the benchmark and managing the ground truth creation. The first two benchmarks run on the VISCERAL framework will be on segmentation and retrieval of 3D medical images.

OriginalspracheEnglisch
TitelThe Future Internet - Future Internet Assembly 2013
UntertitelValidated Results and New Horizons
Herausgeber (Verlag)Springer Verlag
Seiten104-114
Seitenumfang11
ISBN (Print)9783642380815
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa
Veranstaltung2013 Annual Future Internet Assembly, FIA 2013 - Dublin, Irland
Dauer: 8 Mai 201310 Mai 2013

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7858 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz2013 Annual Future Internet Assembly, FIA 2013
Land/GebietIrland
OrtDublin
Zeitraum8/05/1310/05/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cloud-based evaluation framework for big data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren