Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater

Stanislav Melnik, Anna Cathrine Neumann, Ryan Karongo, Sebastian Dirndorfer, Martin Stübler, Verena Ibl, Reinhard Niessner, Dietmar Knopp, Eva Stoger

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

16 Zitate (Scopus)

Abstract

Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen-binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma-derived counterpart. The plant-derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]-microcystins at concentrations of 100–300 ng/L in freshwater samples collected at different sites. Plant-based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody-based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.

OriginalspracheEnglisch
Seiten (von - bis)27-38
Seitenumfang12
FachzeitschriftPlant Biotechnology Journal
Jahrgang16
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cloning and plant-based production of antibody MC10E7 for a lateral flow immunoassay to detect [4-arginine]microcystin in freshwater“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren