Classifying Point Clouds at the Facade-Level Using Geometric Features and Deep Learning Networks

Yue Tan, Olaf Wysocki, Ludwig Hoegner, Uwe Stilla

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

3D building models with facade details are playing an important role in many applications now. Classifying point clouds at facade-level is key to create such digital replicas of the real world. However, few studies have focused on such detailed classification with deep neural networks. We propose a method fusing geometric features with deep learning networks for point cloud classification at facade-level. Our experiments conclude that such early-fused features improve deep learning methods’ performance. This method can be applied for compensating deep learning networks’ ability in capturing local geometric information and promoting the advancement of semantic segmentation.

OriginalspracheEnglisch
TitelRecent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference
Redakteure/-innenThomas H. Kolbe, Andreas Donaubauer, Christof Beil
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten391-404
Seitenumfang14
ISBN (Print)9783031436987
DOIs
PublikationsstatusVeröffentlicht - 2024
VeranstaltungInternational 3D GeoInfo Conference, 3DGeoInfo 2023 - Munich, Deutschland
Dauer: 12 Sept. 202314 Sept. 2023

Publikationsreihe

NameLecture Notes in Geoinformation and Cartography
ISSN (Print)1863-2246
ISSN (elektronisch)1863-2351

Konferenz

KonferenzInternational 3D GeoInfo Conference, 3DGeoInfo 2023
Land/GebietDeutschland
OrtMunich
Zeitraum12/09/2314/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Classifying Point Clouds at the Facade-Level Using Geometric Features and Deep Learning Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren