CLASSIFICATION of AIRBORNE LASER SCANNING DATA USING GEOMETRIC MULTI-SCALE FEATURES and DIFFERENT NEIGHBOURHOOD TYPES

R. Blomley, B. Jutzi, M. Weinmann

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

41 Zitate (Scopus)

Abstract

In this paper, we address the classification of airborne laser scanning data. We present a novel methodology relying on the use of complementary types of geometric features extracted from multiple local neighbourhoods of different scale and type. To demonstrate the performance of our methodology, we present results of a detailed evaluation on a standard benchmark dataset and we show that the consideration of multi-scale, multi-type neighbourhoods as the basis for feature extraction leads to improved classification results in comparison to single-scale neighbourhoods as well as in comparison to multi-scale neighbourhoods of the same type.

OriginalspracheEnglisch
Seiten (von - bis)169-176
Seitenumfang8
FachzeitschriftISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahrgang3
DOIs
PublikationsstatusVeröffentlicht - 2 Juni 2016
Extern publiziertJa
Veranstaltung23rd International Society for Photogrammetry and Remote Sensing Congress, ISPRS 2016 - Prague, Tschechische Republik
Dauer: 12 Juli 201619 Juli 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „CLASSIFICATION of AIRBORNE LASER SCANNING DATA USING GEOMETRIC MULTI-SCALE FEATURES and DIFFERENT NEIGHBOURHOOD TYPES“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren