Abstract
Resonant elastic soft X-ray magnetic scattering (XRMS) is a powerful tool to explore long-periodic spin textures in single crystals. However, due to the limited momentum transfer range imposed by long wavelengths of photons in the soft x-ray region, Bragg diffraction is restricted to crystals with the large lattice parameters. Alternatively, small-angle X-ray scattering has been involved in the soft energy X-ray range which, however, brings in difficulties with the sample preparation that involves focused ion beam milling to thin down the crystal to below a few hundred nm thickness. We show how to circumvent these restrictions using XRMS in specular reflection from a sub-nanometer smooth crystal surface. The method allows observing diffraction peaks from the helical and conical spin modulations at the surface of a Cu (Formula presented.) OSeO (Formula presented.) single crystal and probing their corresponding chirality as contributions to the dichroic scattered intensity. The results suggest a promising way to carry out XRMS studies on a plethora of noncentrosymmetric systems hitherto unexplored with soft X-rays due to the absence of the commensurate Bragg peaks in the available momentum transfer range.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 682-690 |
Seitenumfang | 9 |
Fachzeitschrift | Science and Technology of Advanced Materials |
Jahrgang | 23 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2022 |