CHANNEL ESTIMATION IN UNDERDETERMINED SYSTEMS UTILIZING VARIATIONAL AUTOENCODERS

Michael Baur, Nurettin Turan, Benedikt Fesl, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In this work, we propose to utilize a variational autoencoder (VAE) for channel estimation (CE) in underdetermined (UD) systems. The basis of the method forms a recently proposed concept in which a VAE is trained on channel state information (CSI) data and used to parameterize an approximation to the mean squared error (MSE)-optimal estimator. The contributions in this work extend the existing framework from fully-determined (FD) to UD systems, which are of high practical relevance. Particularly noteworthy is the extension of the estimator variant, which does not require perfect CSI during its offline training phase. This is a significant advantage compared to most other deep learning (DL)-based CE methods, where perfect CSI during the training phase is a crucial prerequisite. Numerical simulations for hybrid and wideband systems demonstrate the excellent performance of the proposed methods compared to related estimators.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten9031-9035
Seitenumfang5
ISBN (elektronisch)9798350344851
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Südkorea
Dauer: 14 Apr. 202419 Apr. 2024

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Land/GebietSüdkorea
OrtSeoul
Zeitraum14/04/2419/04/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „CHANNEL ESTIMATION IN UNDERDETERMINED SYSTEMS UTILIZING VARIATIONAL AUTOENCODERS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren