Channel Estimation based on Gaussian Mixture Models with Structured Covariances

Benedikt Fesl, Michael Joham, Sha Hu, Michael Koller, Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

In this work, we propose variations of a Gaussian mixture model (GMM) based channel estimator that was recently proven to be asymptotically optimal in the minimum mean square error (MMSE) sense. We account for the need of low computational complexity in the online estimation and low cost for training and storage in practical applications. To this end, we discuss modifications of the underlying expectation-maximization (EM) algorithm, which is needed to fit the parameters of the GMM, to allow for structurally constrained covariances. Further, we investigate splitting the 2D time and frequency estimation problem in wideband systems into cascaded 1D estimations with the help of the GMM. The proposed cascaded GMM approach drastically reduces the complexity and memory requirements. We observe that due to the training on realistic channel data, the proposed GMM estimators seem to inherently perform a trade-off between saving complexity/parameters and estimation performance. We compare these low-complexity approaches to a practical and low cost method that relies on the power delay profile (PDP) and the Doppler spectrum (DS). We argue that, with the training on scenario-specific data from the environment, these practical baselines are outperformed by far with equal estimation complexity.

OriginalspracheEnglisch
Titel56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
Redakteure/-innenMichael B. Matthews
Herausgeber (Verlag)IEEE Computer Society
Seiten533-537
Seitenumfang5
ISBN (elektronisch)9781665459068
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 31 Okt. 20222 Nov. 2022

Publikationsreihe

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Band2022-October
ISSN (Print)1058-6393

Konferenz

Konferenz56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum31/10/222/11/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Channel Estimation based on Gaussian Mixture Models with Structured Covariances“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren