Channel-Adaptive Pilot Design for FDD-MIMO Systems Utilizing Gaussian Mixture Models

Nurettin Turan, Benedikt Fesl, Benedikt Böck, Michael Joham, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this work, we propose to utilize Gaussian mixture models (GMMs) to design pilots for downlink (DL) channel estimation in frequency division duplex (FDD) systems. The GMM captures prior information during training that is leveraged to design a codebook of pilot matrices in an initial offline phase. Once shared with the mobile terminal (MT), the GMM is utilized to determine a feedback index at the MT in the online phase. This index selects a pilot matrix from a codebook, eliminating the need for online pilot optimization. The GMM is further used for DL channel estimation at the MT via observation-dependent linear minimum mean square error (LMMSE) filters, parametrized by the GMM. The analytic representation of the GMM allows adaptation to any signal-to-noise ratio (SNR) level and pilot configuration without re-training. With extensive simulations, we demonstrate the superior performance of the proposed GMM-based pilot scheme compared to state-of-the-art approaches.

OriginalspracheEnglisch
Titel2024 19th International Symposium on Wireless Communication Systems, ISWCS 2024
Herausgeber (Verlag)VDE VERLAG GMBH
ISBN (elektronisch)9798350362510
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung19th International Symposium on Wireless Communication Systems, ISWCS 2024 - Rio de Janeiro, Brasilien
Dauer: 14 Juli 202417 Juli 2024

Publikationsreihe

NameProceedings of the International Symposium on Wireless Communication Systems
ISSN (Print)2154-0217
ISSN (elektronisch)2154-0225

Konferenz

Konferenz19th International Symposium on Wireless Communication Systems, ISWCS 2024
Land/GebietBrasilien
OrtRio de Janeiro
Zeitraum14/07/2417/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Channel-Adaptive Pilot Design for FDD-MIMO Systems Utilizing Gaussian Mixture Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren