Challenges of SLAM in Extremely Unstructured Environments: The DLR Planetary Stereo, Solid-State LiDAR, Inertial Dataset

Riccardo Giubilato, Wolfgang Sturzl, Armin Wedler, Rudolph Triebel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

17 Zitate (Scopus)

Abstract

We present the DLR Planetary Stereo, Solid-State LiDAR, Inertial (S3LI) dataset, recorded on Mt. Etna, Sicily, an environment analogous to the Moon and Mars, using a hand-held sensor suite with attributes suitable for implementation on a space-like mobile rover. The environment is characterized by challenging conditions regarding both the visual and structural appearance: severe visual aliasing poses significant limitations to the ability of visual SLAM systems to perform place recognition, while the absence of outstanding structural details, joined with the limited Field-of-View of the utilized Solid-State LiDAR sensor, challenges traditional LiDAR SLAM for the task of pose estimation using point clouds alone. With this data, that covers more than 4 kilometers of travel on soft volcanic slopes, we aim to: 1) provide a tool to expose limitations of state-of-the-art SLAM systems with respect to environments, which are not present in widely available datasets and 2) motivate the development of novel localization and mapping approaches, that rely efficiently on the complementary capabilities of the two sensors.

OriginalspracheEnglisch
Seiten (von - bis)8721-8728
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang7
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Challenges of SLAM in Extremely Unstructured Environments: The DLR Planetary Stereo, Solid-State LiDAR, Inertial Dataset“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren