Challenges in Domain-Specific Abstractive Summarization and How to Overcome Them

Anum Afzal, Juraj Vladika, Daniel Braun, Florian Matthes

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

4 Zitate (Scopus)

Abstract

Large Language Models work quite well with general-purpose data and many tasks in Natural Language Processing. However, they show several limitations when used for a task such as domain-specific abstractive text summarization. This paper identifies three of those limitations as research problems in the context of abstractive text summarization: 1) Quadratic complexity of transformer-based models with respect to the input text length; 2) Model Hallucination, which is a model’s ability to generate factually incorrect text; and 3) Domain Shift, which happens when the distribution of the model’s training and test corpus is not the same. Along with a discussion of the open research questions, this paper also provides an assessment of existing state-of-the-art techniques relevant to domain-specific text summarization to address the research gaps.

OriginalspracheEnglisch
Seiten (von - bis)682-689
Seitenumfang8
FachzeitschriftInternational Conference on Agents and Artificial Intelligence
Jahrgang3
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung15th International Conference on Agents and Artificial Intelligence, ICAART 2023 - Lisbon, Portugal
Dauer: 22 Feb. 202324 Feb. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Challenges in Domain-Specific Abstractive Summarization and How to Overcome Them“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren