CFEAR Radarodometry-Conservative Filtering for Efficient and Accurate Radar Odometry

Daniel Adolfsson, Martin Magnusson, Anas Alhashimi, Achim J. Lilienthal, Henrik Andreasson

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

34 Zitate (Scopus)

Abstract

This paper presents an accurate, highly efficient and learning free method for large-scale radar odometry estimation. By using a simple filtering technique that keeps the strongest returns, we produce a clean radar data representation and reconstruct surface normals for efficient and accurate scan matching. Registration is carried out by minimizing a point-to-line metric and robustness to outliers is achieved using a Huber loss. Drift is additionally reduced by jointly registering the latest scan to a history of keyframes. We found that our odometry pipeline generalize well to different sensor models and datasets without changing a single parameter. We evaluate our method in three widely different environments and demonstrate an improvement over spatially cross validated state-of-the-art with an overall translation error of 1.76% in a public urban radar odometry benchmark, running merely on a single laptop CPU thread at 55 Hz.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5462-5469
Seitenumfang8
ISBN (elektronisch)9781665417143
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Tschechische Republik
Dauer: 27 Sept. 20211 Okt. 2021

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
Land/GebietTschechische Republik
OrtPrague
Zeitraum27/09/211/10/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „CFEAR Radarodometry-Conservative Filtering for Efficient and Accurate Radar Odometry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren