Centralized Learning of the Distributed Downlink Channel Estimators in FDD Systems using Uplink Data

Benedikt Fesl, Nurettin Turan, Michael Koller, Michael Joham, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

In this work, we propose a convolutional neural network (CNN) based low-complexity approach for downlink (DL) channel estimation (CE) in frequency division duplex systems. In contrast to existing work, we use training data which solely stems from the uplink (UL) domain. This allows to learn the CNN centralized at the base station (BS). After training, the network parameters are offloaded to mobile terminals (MTs) within the coverage area of the BS. The MTs can then obtain channel state information of the MIMO channels with the low-complexity CNN estimator. This circumvents the necessity of an infeasible amount of feedback, i.e., acquisition of training data at the user, and the offline training phase at each MT. Numerical results show that the CNN which is trained solely based on UL data performs equally well as the network trained based on DL data. Furthermore, the approach is able to outperform state-of-the-art CE algorithms.

OriginalspracheEnglisch
TitelWSA 2021 - 25th International ITG Workshop on Smart Antennas
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten41-46
Seitenumfang6
ISBN (elektronisch)9783800756889
PublikationsstatusVeröffentlicht - 2021
Veranstaltung25th International ITG Workshop on Smart Antennas, WSA 2021 - French Riviera, Frankreich
Dauer: 10 Nov. 202112 Nov. 2021

Publikationsreihe

NameWSA 2021 - 25th International ITG Workshop on Smart Antennas

Konferenz

Konferenz25th International ITG Workshop on Smart Antennas, WSA 2021
Land/GebietFrankreich
OrtFrench Riviera
Zeitraum10/11/2112/11/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Centralized Learning of the Distributed Downlink Channel Estimators in FDD Systems using Uplink Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren