TY - JOUR
T1 - CD87-positive tumor cells in bone marrow aspirates identified by confocal laser scanning fluorescence microscopy.
AU - Noack, F.
AU - Helmecke, D.
AU - Rosenberg, R.
AU - Thorban, S.
AU - Nekarda, H.
AU - Fink, U.
AU - Lewald, J.
AU - Stich, M.
AU - Schutze, K.
AU - Harbeck, N.
AU - Magdolen, V.
AU - Graeff, H.
AU - Schmitt, M.
PY - 1999/10
Y1 - 1999/10
N2 - Dissemination of single tumor cells to the bone marrow is a common event in cancer. The clinical significance of cytokeratin-positive cells detected in the bone marrow of cancer patients is still a matter of debate. In gastric cancer, overexpression of the receptor (uPAR or CD87) for the serine protease urokinase-type plasminogen activator (uPA) in disseminated cancer cells indicates shorter survival of cancer patients. A new immunofluorescence approach, applying confocal laser scanning microscopy, is introduced to locate CD87 antigen in cytokeratin-positive tumor cells and to quantify the CD87 antigen by consecutive scanning. At first, cytokeratin 8/18/19-positive carcinoma cells are identified at excitation wavelength 488 nm using monoclonal antibody A45B/B3 to the cytokeratins and goat anti-mouse IgG labeled with the fluorochrome Alexa488. Next, CD87 in tumor cells is identified by chicken antibody HU277 to the uPA-receptor and goat anti-chicken IgY labeled with fluorochrome Alexa568 (excitation wavelength 568 nm) and the fluorescence signal quantified on a single cell basis using fluorescently labeled latex beads as the fluorescence reference. From 16 patients with gastric or esophageal carcinoma, bone marrow aspirates were obtained, stained for cytokeratins and CD87 and then subjected to laser scanning fluorescence microscopy. Three of six gastric cancer patients had tumor cells present in the bone marrow of which 2 stained for CD87. Three of ten esophageal carcinoma patients had tumor cells in the bone marrow, all three samples stained for CD87. CD87-positive tumor cells were also dissected from stained bone marrow aspirates by laser microdissection microscope to allow analysis of single cells at the gene level.
AB - Dissemination of single tumor cells to the bone marrow is a common event in cancer. The clinical significance of cytokeratin-positive cells detected in the bone marrow of cancer patients is still a matter of debate. In gastric cancer, overexpression of the receptor (uPAR or CD87) for the serine protease urokinase-type plasminogen activator (uPA) in disseminated cancer cells indicates shorter survival of cancer patients. A new immunofluorescence approach, applying confocal laser scanning microscopy, is introduced to locate CD87 antigen in cytokeratin-positive tumor cells and to quantify the CD87 antigen by consecutive scanning. At first, cytokeratin 8/18/19-positive carcinoma cells are identified at excitation wavelength 488 nm using monoclonal antibody A45B/B3 to the cytokeratins and goat anti-mouse IgG labeled with the fluorochrome Alexa488. Next, CD87 in tumor cells is identified by chicken antibody HU277 to the uPA-receptor and goat anti-chicken IgY labeled with fluorochrome Alexa568 (excitation wavelength 568 nm) and the fluorescence signal quantified on a single cell basis using fluorescently labeled latex beads as the fluorescence reference. From 16 patients with gastric or esophageal carcinoma, bone marrow aspirates were obtained, stained for cytokeratins and CD87 and then subjected to laser scanning fluorescence microscopy. Three of six gastric cancer patients had tumor cells present in the bone marrow of which 2 stained for CD87. Three of ten esophageal carcinoma patients had tumor cells in the bone marrow, all three samples stained for CD87. CD87-positive tumor cells were also dissected from stained bone marrow aspirates by laser microdissection microscope to allow analysis of single cells at the gene level.
UR - http://www.scopus.com/inward/record.url?scp=17044446064&partnerID=8YFLogxK
U2 - 10.3892/ijo.15.4.617
DO - 10.3892/ijo.15.4.617
M3 - Article
C2 - 10493940
AN - SCOPUS:17044446064
SN - 1019-6439
VL - 15
SP - 617
EP - 623
JO - International Journal of Oncology
JF - International Journal of Oncology
IS - 4
ER -