Causal machine learning for predicting treatment outcomes

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, Mihaela van der Schaar

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.

OriginalspracheEnglisch
Seiten (von - bis)958-968
Seitenumfang11
FachzeitschriftNature Medicine
Jahrgang30
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Apr. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Causal machine learning for predicting treatment outcomes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren