Causal Effect Identification in Uncertain Causal Networks

Sina Akbari, Fateme Jamshidi, Ehsan Mokhtarian, Matthew J. Vowels, Jalal Etesami, Negar Kiyavash

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

3 Zitate (Scopus)

Abstract

Causal identification is at the core of the causal inference literature, where complete algorithms have been proposed to identify causal queries of interest. The validity of these algorithms hinges on the restrictive assumption of having access to a correctly specified causal structure. In this work, we study the setting where a probabilistic model of the causal structure is available. Specifically, the edges in a causal graph exist with uncertainties which may, for example, represent degree of belief from domain experts. Alternatively, the uncertainty about an edge may reflect the confidence of a particular statistical test. The question that naturally arises in this setting is: Given such a probabilistic graph and a specific causal effect of interest, what is the subgraph which has the highest plausibility and for which the causal effect is identifiable? We show that answering this question reduces to solving an NP-complete combinatorial optimization problem which we call the edge ID problem. We propose efficient algorithms to approximate this problem and evaluate them against both real-world networks and randomly generated graphs.

OriginalspracheEnglisch
FachzeitschriftAdvances in Neural Information Processing Systems
Jahrgang36
PublikationsstatusVeröffentlicht - 2023
Veranstaltung37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, USA/Vereinigte Staaten
Dauer: 10 Dez. 202316 Dez. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Causal Effect Identification in Uncertain Causal Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren