Cardinality estimation done right: Index-based join sampling

Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, Thomas Neumann

Publikation: KonferenzbeitragPapierBegutachtung

98 Zitate (Scopus)

Abstract

After four decades of research, today’s database systems still suffer from poor query execution plans. Bad plans are usually caused by poor cardinality estimates, which have been called the “Achilles Heel” of modern query optimizers. In this work we propose index-based join sampling, a novel cardinality estimation technique for main-memory databases that relies on sampling and existing index structures to obtain accurate estimates. Results on a real-world data set show that this approach significantly improves estimation as well as overall plan quality. The additional sampling effort is quite low and can be configured to match the desired application profile. The technique can be easily integrated into most systems.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2017
Veranstaltung8th Biennial Conference on Innovative Data Systems Research, CIDR 2017 - Santa Cruz, USA/Vereinigte Staaten
Dauer: 8 Jan. 201711 Jan. 2017

Konferenz

Konferenz8th Biennial Conference on Innovative Data Systems Research, CIDR 2017
Land/GebietUSA/Vereinigte Staaten
OrtSanta Cruz
Zeitraum8/01/1711/01/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cardinality estimation done right: Index-based join sampling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren