Can social media data augment travel demand survey data?

Emmanouil Chaniotakis, Constantinos Antoniou, Josep Maria Salanova Grau, Loukas Dimitriou

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Travel surveys provide valuable inputs to a variety of models. While they are well-established, and reliable, they are also associated with large expenses (both in terms of time and actual cost). With the emergence of social media and alternative data sources, researchers and practitioners often wonder if such data sources can supplement (or obviate the need for) conventional data collection efforts. In this research, we empirically examine of the use of different social media data for such applications. Data from three popular Social Media is examined and compared with data from conventional travel-diary surveys for the city of Thessaloniki, Greece. Both spatial and temporal aspects of the activities' representation are considered. The findings of this research contribute towards the identification of methodologies that can support the inference of meaningful travel information from Social Media, which could in turn improve ITS applications.

OriginalspracheEnglisch
Titel2016 IEEE 19th International Conference on Intelligent Transportation Systems, ITSC 2016
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1642-1647
Seitenumfang6
ISBN (elektronisch)9781509018895
DOIs
PublikationsstatusVeröffentlicht - 22 Dez. 2016
Veranstaltung19th IEEE International Conference on Intelligent Transportation Systems, ITSC 2016 - Rio de Janeiro, Brasilien
Dauer: 1 Nov. 20164 Nov. 2016

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC

Konferenz

Konferenz19th IEEE International Conference on Intelligent Transportation Systems, ITSC 2016
Land/GebietBrasilien
OrtRio de Janeiro
Zeitraum1/11/164/11/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Can social media data augment travel demand survey data?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren