Camera-pose estimation via projective newton optimization on the manifold

Michel Sarkis, Klaus Diepold

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

13 Zitate (Scopus)

Abstract

Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

OriginalspracheEnglisch
Aufsatznummer6094213
Seiten (von - bis)1729-1741
Seitenumfang13
FachzeitschriftIEEE Transactions on Image Processing
Jahrgang21
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Apr. 2012

Fingerprint

Untersuchen Sie die Forschungsthemen von „Camera-pose estimation via projective newton optimization on the manifold“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren