Calibration of Controlled Markov Chains for Predicting Pedestrian Crossing Behavior Using Multi-objective Genetic Algorithms

Jingyuan Wu, Johannes Ruenz, Matthias Althoff

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Pedestrian motion prediction is a core issue in assisted and automated driving and challenging to solve. In this work, controlled Markov chains are used for predicting pedestrian crossing behavior in urban environments with and without crosswalks. Intentions, such as crossing a road, are estimated by incorporating the probability of colliding with other traffic participants. On a public dataset, we calibrate the model parameters using genetic algorithms which we formulate as a multi-objective optimization problem. Rather than only minimizing the position deviation of the prediction, we also consider the classification performance for pedestrians' crossing intention. The conducted evaluation shows benefits of our approach: it achieves comparable intention recognition performance compared to a support vector machine, while additionally achieving accurate spatiotemporal predictions.

OriginalspracheEnglisch
Titel2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1032-1038
Seitenumfang7
ISBN (elektronisch)9781538670248
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Veranstaltung2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 - Auckland, Neuseeland
Dauer: 27 Okt. 201930 Okt. 2019

Publikationsreihe

Name2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019

Konferenz

Konferenz2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
Land/GebietNeuseeland
OrtAuckland
Zeitraum27/10/1930/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Calibration of Controlled Markov Chains for Predicting Pedestrian Crossing Behavior Using Multi-objective Genetic Algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren