CALC-VFS: Content-adaptive low-complexity Video Frame Synthesis

Nicola Giuliani, Hongjie You, A. Burakhan Koyuncu, Atanas Boev, Elena Alshina, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We present a content-adaptive, low-complexity video frame synthesis algorithm. Our approach applies the dynamic convolutions content adaptation approach to the widely used frame synthesis algorithm IFRNet. By introducing dynamic convolutions into both the pyramid encoder and the coarse-to-fine decoders of IFRNet, we enforce sparsity, thereby limiting the computationally expensive operations to only the necessary pixels. Training for specific sparsity targets allows us to achieve overall less computational complexity compared to IFRNet while having similar performance. We demonstrate the performance and content adaptivity in two test scenarios and show the savings in computational budget (approximately 20-40%) compared to the baseline IFRNet.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE International Symposium on Multimedia, ISM 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten57-61
Seitenumfang5
ISBN (elektronisch)9798350395761
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Symposium on Multimedia, ISM 2023 - Laguna Hills, USA/Vereinigte Staaten
Dauer: 11 Dez. 202313 Dez. 2023

Publikationsreihe

NameProceedings - 2023 IEEE International Symposium on Multimedia, ISM 2023

Konferenz

Konferenz2023 IEEE International Symposium on Multimedia, ISM 2023
Land/GebietUSA/Vereinigte Staaten
OrtLaguna Hills
Zeitraum11/12/2313/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „CALC-VFS: Content-adaptive low-complexity Video Frame Synthesis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren