CACTUSS: Common Anatomical CT-US Space for US Examinations

Yordanka Velikova, Walter Simson, Mehrdad Salehi, Mohammad Farid Azampour, Philipp Paprottka, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Abdominal aortic aneurysm (AAA) is a vascular disease in which a section of the aorta enlarges, weakening its walls and potentially rupturing the vessel. Abdominal ultrasound has been utilized for diagnostics, but due to its limited image quality and operator dependency, CT scans are usually required for monitoring and treatment planning. Recently, abdominal CT datasets have been successfully utilized to train deep neural networks for automatic aorta segmentation. Knowledge gathered from this solved task could therefore be leveraged to improve US segmentation for AAA diagnosis and monitoring. To this end, we propose CACTUSS: a common anatomical CT-US space, which acts as a virtual bridge between CT and US modalities to enable automatic AAA screening sonography. CACTUSS makes use of publicly available labelled data to learn to segment based on an intermediary representation that inherits properties from both US and CT. We train a segmentation network in this new representation and employ an additional image-to-image translation network which enables our model to perform on real B-mode images. Quantitative comparisons against fully supervised methods demonstrate the capabilities of CACTUSS in terms of Dice Score and diagnostic metrics, showing that our method also meets the clinical requirements for AAA scanning and diagnosis.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
Redakteure/-innenLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten492-501
Seitenumfang10
ISBN (Print)9783031164361
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapur
Dauer: 18 Sept. 202222 Sept. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13433 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Land/GebietSingapur
OrtSingapore
Zeitraum18/09/2222/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „CACTUSS: Common Anatomical CT-US Space for US Examinations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren