Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves

Felix Groß, Mateusz Zelent, Nick Träger, Johannes Förster, Umut T. Sanli, Robert Sauter, Martin Decker, Christian H. Back, Markus Weigand, Kahraman Keskinbora, Gisela Schütz, Maciej Krawczyk, Joachim Gräfe

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.

OriginalspracheEnglisch
Seiten (von - bis)17184-17193
Seitenumfang10
FachzeitschriftACS Nano
Jahrgang14
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 22 Dez. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren