Building a balanced and well-rounded dataset for railway asset detection

Felix Eickeler, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The entire railway network in Europe has a total length of close to 200 thousand kilometres and is one of the main components of European infrastructure (Eurostat Database 2021). Modernising and maintenance is a sizable effort, and due to the long lifespan of railway links, documentation is discontinued, incomplete, or lost. Using survey methods and recreating accurate as-is documentation improve the efficiency and effectivity of maintaining the rail network. In this paper, we present one major building block in creating such a recognition model. While focusing on images and semantic segmentation, the paper describes how a well-rounded dataset for training ML models can be constructed efficiently. Such a dataset is the missing part in adapting modern image recognition systems to railways and providing semantic information for a fully usable building information model (BIM).

OriginalspracheEnglisch
TitelEG-ICE 2021 Workshop on Intelligent Computing in Engineering, Proceedings
Redakteure/-innenJimmy Abualdenien, Andre Borrmann, Lucian-Constantin Ungureanu, Timo Hartmann
Herausgeber (Verlag)Technische Universitat Berlin
Seiten475-485
Seitenumfang11
ISBN (elektronisch)9783798332126
PublikationsstatusVeröffentlicht - 2021
Veranstaltung28th International Workshop on Intelligent Computing in Engineering of the European Group for Intelligent Computing in Engineering, EG-ICE 2021 - Virtual, Online
Dauer: 30 Juni 20212 Juli 2021

Publikationsreihe

NameEG-ICE 2021 Workshop on Intelligent Computing in Engineering, Proceedings

Konferenz

Konferenz28th International Workshop on Intelligent Computing in Engineering of the European Group for Intelligent Computing in Engineering, EG-ICE 2021
OrtVirtual, Online
Zeitraum30/06/212/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Building a balanced and well-rounded dataset for railway asset detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren