BRISK: Binary Robust invariant scalable keypoints

Stefan Leutenegger, Margarita Chli, Roland Y. Siegwart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3204 Zitate (Scopus)

Abstract

Effective and efficient generation of keypoints from an image is a well-studied problem in the literature and forms the basis of numerous Computer Vision applications. Established leaders in the field are the SIFT and SURF algorithms which exhibit great performance under a variety of image transformations, with SURF in particular considered as the most computationally efficient amongst the high-performance methods to date. In this paper we propose BRISK 1, a novel method for keypoint detection, description and matching. A comprehensive evaluation on benchmark datasets reveals BRISK's adaptive, high quality performance as in state-of-the-art algorithms, albeit at a dramatically lower computational cost (an order of magnitude faster than SURF in cases). The key to speed lies in the application of a novel scale-space FAST-based detector in combination with the assembly of a bit-string descriptor from intensity comparisons retrieved by dedicated sampling of each keypoint neighborhood.

OriginalspracheEnglisch
Titel2011 International Conference on Computer Vision, ICCV 2011
Seiten2548-2555
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
Veranstaltung2011 IEEE International Conference on Computer Vision, ICCV 2011 - Barcelona, Spanien
Dauer: 6 Nov. 201113 Nov. 2011

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision

Konferenz

Konferenz2011 IEEE International Conference on Computer Vision, ICCV 2011
Land/GebietSpanien
OrtBarcelona
Zeitraum6/11/1113/11/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „BRISK: Binary Robust invariant scalable keypoints“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren