Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining

Julian Rott, Rene Dorsch, Michael Freund, Markus Böhm, Andreas Harth, Helmut Krcmar

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Cross-organizational process mining (coPM) with data from at least two organizations assists cooperating organizations in optimizing their operations by enabling an in-depth and continuous process analysis. As coPM faces unique challenges and is rarely applied, we followed a design science-based approach and developed a three-step extension to the PM project methodology to integrate data across organizational boundaries. Each organization first creates a local event data knowledge graph (KG). Second, a trusted third party integrates all local KGs into a global KG. Third, a federated event log and process knowledge are retrieved for coPM analysis. Overall, we present the first version of a methodology to support data integration for coPM, thereby assisting researchers and practitioners in unlocking value potentials from coPM analysis.

OriginalspracheEnglisch
TitelProcess Mining Workshops - ICPM 2023 International Workshops, 2023, Revised Selected Papers
Redakteure/-innenJohannes De Smedt, Pnina Soffer
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten499-512
Seitenumfang14
ISBN (Print)9783031561061
DOIs
PublikationsstatusVeröffentlicht - 2024
VeranstaltungInternational workshops which were held in conjunction with 5th International Conference on Process Mining, ICPM 2023 - Rome, Italien
Dauer: 23 Okt. 202327 Okt. 2023

Publikationsreihe

NameLecture Notes in Business Information Processing
Band503 LNBIP
ISSN (Print)1865-1348
ISSN (elektronisch)1865-1356

Konferenz

KonferenzInternational workshops which were held in conjunction with 5th International Conference on Process Mining, ICPM 2023
Land/GebietItalien
OrtRome
Zeitraum23/10/2327/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren