Bounds on List Decoding of Linearized Reed-Solomon Codes

Sven Puchinger, Johan Rosenkilde

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). List decoding in these extreme cases is well-studied, and the two code classes behave very differently in terms of list size, but nothing is known for the general case. In this paper, we derive a lower bound on the list size for LRS codes, which is, for a large class of LRS codes, exponential directly above the Johnson radius. Furthermore, we show that some families of linearized Reed-Solomon codes with constant numbers of blocks cannot be list decoded beyond the unique decoding radius.

OriginalspracheEnglisch
Titel2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten154-159
Seitenumfang6
ISBN (elektronisch)9781538682098
DOIs
PublikationsstatusVeröffentlicht - 12 Juli 2021
Veranstaltung2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australien
Dauer: 12 Juli 202120 Juli 2021

Publikationsreihe

NameIEEE International Symposium on Information Theory - Proceedings
Band2021-July
ISSN (Print)2157-8095

Konferenz

Konferenz2021 IEEE International Symposium on Information Theory, ISIT 2021
Land/GebietAustralien
OrtVirtual, Melbourne
Zeitraum12/07/2120/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bounds on List Decoding of Linearized Reed-Solomon Codes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren