Blind source separation of linear mixtures with singular matrices

Pando Georgiev, Fabian J. Theis

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

6 Zitate (Scopus)

Abstract

We consider the Blind Source Separation problem of linear mixtures with singular matrices and show that it can be solved if the sources are sufficiently sparse. More generally, we consider the problem of identifying the source matrix S ∈ IRn×N if a linear mixture X = AS is known only, where A ∈ IRm×n, m ≤ n and the rank of A is less than m. A sufficient condition for solving this problem is that the level of sparsity of S is bigger than m - rank(A) in sense that the number of zeros in each column of S is bigger than m - rank(A). We present algorithms for such identification and illustrate them by examples.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Redakteure/-innenCarlos G. Puntonet, Alberto Prieto
Herausgeber (Verlag)Springer Verlag
Seiten121-128
Seitenumfang8
ISBN (elektronisch)3540230564, 9783540230564
DOIs
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band3195
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blind source separation of linear mixtures with singular matrices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren