Blind source separation and sparse component analysis of overcomplete mixtures

Pando Georgiev, Fabian Theis, Andrzej Cichocki

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

46 Zitate (Scopus)

Abstract

We formulate conditions (k-SCA-conditions) under which we can represent a given (m × N) -matrix X (data set) uniquely (up to scaling and permutation) as a multiplication of m ×n and n × N matrices A and S (often called mixing matrix or dictionary and source matrix, respectively), such that S is sparse of level n-m+k in sense that each column of S has at least n - m + k zero elements. We call this the k-Sparse Component Analysis problem (k-SCA). Conditions on a matrix S are presented such that the k-SCA-conditions are satisfied for the matrix X = AS, where A is an arbitrary matrix from some class. This is the Blind Source Separation problem and the above conditions are called identifiability conditions. We present new algorithms: for matrix identification (under k-SCA-conditions), and for source recovery (under identifiability conditions). The methods are illustrated with examples, showing good separation of the high-frequency part of mixtures of images after appropriate sparsification.

OriginalspracheEnglisch
Seiten (von - bis)V-493-V-496
FachzeitschriftICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Jahrgang5
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa
VeranstaltungProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing - Montreal, Que, Kanada
Dauer: 17 Mai 200421 Mai 2004

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blind source separation and sparse component analysis of overcomplete mixtures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren