Blind demixing and deconvolution with noisy data: Near-optimal rate

Dominik Stoeger, Peter Jung, Felix Krahmer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

We consider simultaneous blind deconvolution of r source signals from its noisy superposition, a problem also referred to blind demixing and deconvolution. This signal processing problem occurs in the context of the Internet of Things where a massive number of sensors sporadically communicate only short messages over unknown channels. We show that robust recovery of message and channel vectors can be achieved via convex optimization when random linear encoding using i.i.d. is applied at the devices and the number of required measurements at the receiver scales with the degrees of freedom of the overall estimation problem. Since the scaling is linear in r this significantly improves over recent results.

OriginalspracheEnglisch
Titel21st International ITG Workshop on Smart Antennas, WSA 2017
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten270-274
Seitenumfang5
ISBN (elektronisch)9783800743940
PublikationsstatusVeröffentlicht - 2017
Veranstaltung21st International ITG Workshop on Smart Antennas, WSA 2017 - Berlin, Deutschland
Dauer: 15 März 201717 März 2017

Publikationsreihe

Name21st International ITG Workshop on Smart Antennas, WSA 2017

Konferenz

Konferenz21st International ITG Workshop on Smart Antennas, WSA 2017
Land/GebietDeutschland
OrtBerlin
Zeitraum15/03/1717/03/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blind demixing and deconvolution with noisy data: Near-optimal rate“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren